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Abstract 
The microstructure of materials, i.e. the size, shape and arrangement of grains, determines essentially 
the material properties such as mechanical strength, toughness, electrical conductivity and magnetic 
susceptibility. In general the desirable property of materials can be controlled and improved by 
understanding of microstructure evolution processes in grain growth controlled by grain boundary 
migration, and grain boundary diffusion. The process of grain growth involves both grain boundary 
migration (moving interfaces) and topological changes of grain boundary geometry, and it can not be 
effectively modeled by Lagrangian, Eulerian, or Arbitrary Lagrangian Eulerian finite element method 
when in addition the stress effect is considered. A double-grid method is proposed for modeling  grain 
boundary migration under stress. In this approach, the material grid carries kinematic and kinetic 
material variables, whereas the grain boundary grid carries only grain boundary kinematic variables. 
The material domain is discretized by a reproducing kernel approximation with strain discontinuity 
enrichment across the grain boundaries. The grain boundaries, on the other hand, are discretized by the 
standard finite elements. This approach allows modeling of arbitrary evolution of grain boundaries 
without remeshing. 
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1 Introduction 

Grain growth is the process by which the average grain size in a polycrystalline material increases in 
time. The evolution of the microstructure during the grain growth takes place via the migration of the 
grain boundaries towards their centers of curvature, the driving force being provided by the decrease in 
energy associated with the decrease of the length of the grain boundaries. There have been many 
experimental and theoretical investigations of grain growth process starting from 1950s. In recent 
years, various types of computer simulation models have been developed with the aim of simulating 
the detailed evolution of microstructure during grain growth. These simulation models fall mainly into 
two classes: probabilistic [1] and deterministic [5, 7, 9, 11, 12]. 
 
Probabilistic models are generally of Monte-Carlo type and have their basis in the classical spin 
models of statistical physics; the most investigated is Potts model [1]. In the Potts model approach 
grains are subdivided into small-area elements and growth dynamics are simulated by exchange of 
area elements between grains. Growth takes place as a consequence of the minimization of the internal 
energy of the system. The exchange step of area elements from one grain to the neighboring grain is 
carried out using a Monte Carlo algorithm. The advantage of this method is its simplicity and the ease 
of its implementation in two and three-dimensional systems. However, in this method the origin of the 
stochastic aspect is not clear, nor is the relation between the Monte Carlo time step and the physical 
time. 
 
In the deterministic models, the motion of grain boundaries is followed by time integration of their 
position assuming the normal velocity of the grain boundary to be proportional to the boundary 
curvature. A purely deterministic approach was proposed first by Fullman [8] and is referred to as 
“vertex model”. Later, this was improved by Soares et al. [12] and Kawasaki et al. [9] assuming 
straight grain boundaries, and by Frost et al. [7], Cocks and Gill [5], and Weygand et al. [15] by 
extending it to curved grain boundaries. Using the theoretical approach of Needleman and Rice [11] 
based on a variational principle for dissipative systems, Cocks and Gill [5] have proposed a new 
method to simulate curvature-driven grain growth. Their modification describes the rate of power 
dissipation due to the competition between the reduction in the grain boundary energy and the viscous 
drag during grain boundary migration. Moreover, the grain boundaries are discretized using finite 
elements. 
 
When a polycrystalline microstructure is subjected to an externally applied stress, an additional driving 
force, besides that resulting from the grain boundary curvature, has to be considered. This is due to the 
elastic anisotropy of the grains comprising the microstructure, which in general store different amounts 
of elastic energies. Our focus in this study is to investigate the grain growth in the presence of both 
curvature driven and stress induced grain boundary migration.  
 
In this work, we introduce a variational equation based on the balance of energies associated with 
grain boundary surface tension and curvature, elastic strain energy, and the elastic strain energy 
difference due to anisotropy between adjacent grains. This reflects the coupling of elastic deformation 
of grains with grain boundary migration and thus necessitates the discretization of grain boundaries 
and grain domains. Using finite element method to study the migration of grain boundaries leads to a 
severe mesh distortion in each grain, and the topological changes of grain structures further demand a 
complete remeshing. To address the above mentioned issues, a double-grid method is proposed. The 
elastic deformation of grains is modeled by a reproducing kernel discretization with built-in strain 
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discontinuities along the grain boundaries [3, 4, 14], whereas the migration kinematics of discretized 
grain boundaries is modeled using the standard finite element approximation. 
 
The layout of this paper is as follows. Grain growth kinematics and the geometry of polycrystalline 
system are briefly reviewed in Section 2. In Section 3, the variational formulation for boundary 
migration under stress is presented. The doubled-grid discretization and formulation for grain 
boundary and material domains are introduced in Section 4. Section 5 demonstrates that the evolution 
of grain growth can be effectively simulated without any remeshing through numerical examples. 

2 Grain Growth Kinematics and Polycrystalline Geometry 

2.1 Grain Growth Kinematics 

In general, the grain boundaries migrate at a wide range of velocities, which depend on the magnitude 
of both the driving force and the grain boundary mobility (dependent on temperature, and impurities 
concentration). Using a simplified model, Burke and Turnbull [2] proposed a parabolic relationship for 
the grain growth kinetic. 
 
The driving force cf  due to the surface curvature (the capillarity effect) is  

 c
1 2

1 1f ( )( )
R R

γ θ= +  (1) 

where ( )γ θ  is the surface tension (the boundary energy per unit area) which in general dependents on 
the grain-boundary misorientation θ , and 1R  and 2R  are the principal radii of the surface curvature. 
 
Assuming that the only forces acting on a grain boundary are those given by Eq.(1) and that ( )γ θ  is 
constant for all boundaries, the growth process is characterized by the parabolic equation: 
 n nR ( t ) R (0 ) kt− =  (2) 

where n takes the value of 2 and is known as the grain growth exponent, ( )R t  is the mean grain radius 
at time t, and k is a constant. The grain growth exponent is one of the most important characteristics of 
the growth and the experimental value ranges from n=2 to n=4. 
 
In general at small grain sizes the most significant driving force for grain boundary migration is the 
surface tension. However, at larger grain sizes and in the presence of strain energy, additional driving 
forces [6] due to the difference in elastic strain energies in the volumes of neighboring grains, may 
also play a key role in grain boundary migration. For instance, this driving force ef  can be expressed 
as: 

 e

U
f

V
∆

=
∆

 (3) 

where U∆  is the difference in the strain energy stored in volume V∆  between adjacent grains, and 
V∆  is the volume through which the grain boundary segment has swept during a migration step.  



 J. S. Chen, H. Lu, D. Moldovan, D. Wolf  
 

 
 

4

face 

vertex 

edge

(a) T1 change 

(b) T2 change 

(c) T3 change 

2.2 Topology of Polycrystalline Geometry 

The geometry of a 2D polycrystalline material is determined by the arrangement of the fundamental 
elements such as vertices, edges and faces as shown in Fig. 1. These elements obey the Euler relation: 
 F E V 1− + =  (4) 

where F, E, and V are the numbers of faces, edges and vertices. Although any number of edges can 
join in a vertex, the threefold vertices are the one favored energetically  in 2-D polycrystalline systems, 
and it follows 
 3V 2E nF= =  (5) 

where n  is the mean number of vertices per face (grain). For a system with a large number of grains 
1N , this implies 6n = . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: 2-D grain structure 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Topological changes of grain boundaries 
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In 2D, unless the microstructure consists of a regular array of hexagons, grain growth is inevitable. 
According to Eq. (5), each grain disappearance is accompanied by vanishing of two vertices and three 
edges. Moreover, for a system with isotropic grain boundary properties, the von Neumann [13] 
relation predicts that any grain with more than 6 edges will grow, while those having less 6 edges will 
shrink. The topology of the system evolves continuously during growth. In order to provide solutions 
for the necessary topological transformations during growth, typical topological transformations have 
been implemented.  These are T1, T2 and T3 topological changes as shown in Fig. 2. 

3 Variational Formulation 

As the formal basis for this study we use the variational principle for dissipative systems originally 
formulated by Needleman and Rice [11] for grain boundary and surface diffusion in the context of 
void growth. Latter this was adapted for grain boundary migration studies by Cocks and Gill [5]. Here 
we extend this formalism by incorporating additional terms for grain boundary migration under the 
effect of stress. Due to the flexibility of the variational approach it is straightforward to add additional  
terms to the variational functional describing different phenomena such as grain boundary diffusion 
and  surface diffusion. Consider a two-dimensional domain Ω  with a grain boundary network gbΓ , 
external boundary Γ , and is subjected to an external traction as shown in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Problem model  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: A segment of grain boundary 
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We start with a virtual grain boundary migration with a virtual velocity nv  normal to the grain 
boundary and a virtual velocity sv  along the arc length of the boundary. The positive normal direction 
is defined as the normal direction pointing outward with respect to the curvature center of the surface 
as shown in Fig. 4. The virtual rate of energy dissipation associated with a virtual grain boundary 
migration velocity v  is 
 1

gb
c n gbW f v d

Γ
δ = δ Γ∫  (6) 

Due to the velocities nv  and sv  , as shown in Fig. 4, the rate of elongations per unit length of the grain 
boundary can be calculated as 

 n s
s

v v
R s
δ δδε ∂

= +
∂

 (7) 

where R  is grain boundary radius of curvature. Therefore the rate of virtual work done by the grain 
boundary tension reads  

 2 ( )
gb gb

n s
s

v vW ds ds
R s
δ δδ γδε γ

Γ Γ

∂
= = +

∂∫ ∫  (8) 

In a system in which there is a variation in the material elastic properties of any two adjacent grains, 
the strain energy density in the two regions on the opposite side of a grain boundary is in general 
different.  Therefore, when an external stress is considered, besides  the capillary force, there is an 
additional contribution to the driving force acting on  a grain boundary due to the discontinuities in the 
strain energy density distribution across the  boundary. As shown in Fig. 5, the gain of virtual rate of 
strain energy in response to the virtual velocity of the grain boundary nvδ  can be written as 

 :
gb

3 n
1W ( ) v d
2Γ

δ δ Γ+ −= −∫ σ ε ε  (9) 

where +ε is the strain in the grain that gains virtual area nv dδ Γ  (grain A), and −ε  is the strain in the 
grain located on the other side of the grain boundary (grain B). 
 
The principle of virtual work of the above effects reads: 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Strain energy change due to grain boundary migration 
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gb

gb gb

h

s n
c n n

ij ij i i i i

v v 1( )ds f v ds : ( ) v d
s R 2

1( )d v h d v b d 0
2

Γ
Γ Γ

Ω Γ Ω

δ δγ δ δ Γ

δ ε σ Ω δ Γ δ Γ

+ −∂
+ + + −

∂

+ − − =

∫ ∫ ∫

∫ ∫ ∫

σ ε ε

 (10) 

The first two terms in Eq. (10) correspond to the rate of grain boundary network energy change and 
the rate of energy dissipated by the migration of grain boundaries. The third term gives the rate of 
elastic energy change due to grain boundary migration while the fourth term quantifies the rate of 
energy change of the elastic energy due to the change in the stress and strain field. The last to terms in 
Eq. (10) are due to the rate of work done by the external forces (bulk and surface traction).  In addition 
to this a creep law is considered for each grain as 
 ij ijkl klCσ ε=  (11) 

 
vv1 ji( )ij 2 x xj i

ε
∂∂

= +
∂ ∂

 (12) 

iv  is material velocity, ih  is surface traction, ib  is body force and hΓ is boundary with surface 
traction. The viscoelastic tensor ijklC  is generally anisotropic describing the crystallographic 
orientation of grain. 
 
Assuming the normal velocity nv  of grain boundary is proportional to the driving force, i.e. 

 n cv mf=  (13) 

where m  is grain boundary mobility associated with driving force cf , Eq. (10) reduces to 

 
gb

gb gb

h

s n n
n n

ij ijkl kl i i i i

v v v 1( )ds v ds : ( ) v d
s R m 2

C d v h d v b d 0

Γ
Γ Γ

Ω Γ Ω

δ δγ δ δ Γ

ε δε Ω δ Γ δ Γ

+ −∂
+ + + −

∂

+ − − =

∫ ∫ ∫

∫ ∫ ∫

σ ε ε
 (14) 

4 A Double-grid Formulation 

Grain boundary velocity v  and material velocity v  are the two primary variables involved in the 
formulation of this physical problem. As shown in Fig. 6, the material domain is discretized by 
introduction of material points carrying material velocity v , whereas the grain boundary is discretized 
by defining the grain boundary points carrying grain boundary velocity v . In this approach, the 
material velocity is approximated by a reproducing kernel approximation with strain discontinuity 
along material interface [4, 14]. The grain boundary velocity is approximated by the standard finite 
element shape function, i.e., 
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Figure 6: Double grid discretization 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Interface enrichment function and its derivatives along the normal direction of the grain 
boundaries 

 
 

 
NPm

i I iI
I 1

v ( )Ψ υ
=

= ∑ x  (15) 

 
NPgb

i I iI
I 1

v N ( s )υ
=

= ∑  (16) 

 
where NPm is the number of material points, NPgb is the number of grain boundary points, IN ( s )  is 
the 1-dimensional shape function defined along the grain boundary using grain boundary coordinate s, 
and I ( )Ψ x  is the reproducing kernel shape function defined in the 2-dimensional material domain as 
follows 
 ˆ( ) ( ) ( )Ψ Ψ Ψx x x= +  (17) 

Grain boundary pointMaterial point
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In Eq. (17), ˆ ( )Ψ x  is the interface enrichment function employed to introduce derivative discontinuity 
along the grain boundary as shown in Fig. 7, and ( )Ψ x  is the reproducing kernel function introduced 
to impose completeness of the approximation. Following the procedures described in [4, 14] the 
reproducing kernel function is expressed as 

 
NPm

T 1
I I I a I

I 1

ˆ( ) ( ) ( )[ ( ) ( ) ( )] ( )Ψ Ψ Φx H x x M x H 0 x H x x x x−

=

= − − − −∑  (18) 

 T
I I I( ) [1,x x , y y ]H x x− = − −  (19) 

 
NPm

T
I I a I

I 1

( ) ( ) ( ) ( )Φ
=

= − − −∑M x H x x H x x x x  (20) 

where a I( )Φ −x x  is the kernel function with support size “a”. 
 
For the typical grain boundary element shown in Fig. 8, the corresponding approximation is obtained 
by following equations. 

 v N
I I 1h

h I1
I Ih

I2 I I 2
I

N
v
v N

υ

υ

 
   = = =       

∑
∑∑

υ  (21) 

 I
I

I

N 0
  

0 N
 

=  
 

N  (22) 

 1I
I

2I

   
υ
υ
 

=  
 

υ  (23) 

 1
n nx ny n n Ι Ι

I2

v
v [ e ,e ]

v
R v R N 

= = = 
 

∑ υ  (24) 

 n nx ny[ e ,e ]=R  (25) 

 1
s sx sy s s I I

I2

v
v [ e ,e ]

v
R v R N 

= = = 
 

∑ υ  (26) 

 s sx sy[ e ,e ]=R  (27) 

where ne  and se  are of normal and tangential unit vectors, respectively, shown in Fig. 8. 



 J. S. Chen, H. Lu, D. Moldovan, D. Wolf  
 

 
 

10

 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Typical grain boundary element  
 
The matrix equations are obtained by substituting previous equations into Eqn. (14) to yield  
 ext bdK f f= +υ  (28) 

 gb gb stC f f= − −υ  (29) 

where 
 T

IJ I J d
Ω

ΩK B CB= ∫  (30) 

 
I ,x

I I ,y

I ,y I ,x

0
0

Ψ
Ψ

Ψ Ψ

 
 =  
  

B  (31) 
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C C C
C C C

C
 
 =  
  

 (32) 

 
h
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Γ
Ψ Γf h= ∫  (33) 
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Ω
Ψ Ω= ∫f b  (34) 

 
1
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i i
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i
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gb
i

Ngb
st T T

I I n
i 1

1 : ( ) d
2Γ

Γf σ ε ε N R+ −

=

= −∑∫  (38) 

5 Numerical examples 

First, the focus of our study is on the grain growth by grain boundary migration only. Two seven-side 
and two five-side grains were introduced at the center of a perfect hexagonal array as shown in Fig. 9 
(a). The elastic properties of all the grains comprising the microstructure are assumed to be isotropic. 
The presence of the topological imperfections in the grain network triggers the time evolution of the 
microstructure; the driving force being the reduction of the free energy of the grain boundary network. 
As the time progresses the grain boundary migration via topology changes generates additional grains 
that are not 6 sided. In agreement with the von Newman relation [10, 13], the grains with less than 6 
edges continue to shrink and eventually disappear while those having more than 6 sides continue to 
grow. The time evolution of the microstructure is shown in Figs. 9 (b)-(f). 
 
Next, the focus of our study is on the coupling between curvature-driven and stress induced grain 
boundary migration. A network of uniform hexagonal grains, with a central one whose elastic material 
property is different from the others, (as shown in Figs. 10 and 11) is subjected to a tensile stress in the 
vertical direction. In the first case, the Young’s modulus of the center grain is greater than that of the 
other grains. The evolution of microstructure is shown in the six snapshots of Fig. 10. Interestingly, 
although all of the grains in the microstructure have the same topology (six sided) the microstructure is 
unstable to grain growth. This instability is due to the additional driving force acting on the boundaries 
surrounding the center grain resulting from the different elastic energy stored in the center grain and 
the surrounding ones. The center grain has a lower energy density. Several T1 topological changes on 
the grain boundaries of grains surrounding the center one give rise to a grains with less than 6 edges 
therefore this further promotes its growth (see central grain in Fig. 10). In the end this continuous 
evolution results in a central grain that occupies most of the domain.  
 
In the second case, a central grain with smaller Young’s modulus is introduced. In this case the center 
grain has a higher elastic energy density compared with the neighboring ones. Therefore at the initial 
stage, this grain shrinks as shown in Fig. 11 in order to reduce the total strain energy of the system. 
After several T1 and T3 topological changes, the central grain disappears and leads to an unstable 
microstructure where several grains have less than 6 edges and one with more than 6 edges. The one 
grain with more than 6 edges continues to grow whereas the surrounding grains with less than 6 edges 
keep on reducing their sizes and eventually disappear.  
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                                     (a)                                                                      (b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     (c)                                                                      (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     (e)                                                                      (f) 

 
Figure 9: Grain growth in regular hexagonal structure with imperfection in the center 
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Figure 10: Imperfection with stiffer grain 
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Figure 11: Imperfection with softer grain 
 
 

6 Conclusion 

A variational formulation and a double-grid discretization method for modeling grain growth and 
boundary migration are introduced in this work. The material velocity field inside each grain is 
interpolated by a reproducing kernel function defined on a background grid. The grain boundary 
migration velocity, on the other hand, is interpolated by a set of finite element shape functions defined 
on the grain boundaries. The new variational formulation takes into account the strain energy effects 
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on the evolution of the microstructure during grain growth, and the double-grid approach allows the 
modeling of microstructure evolution in polycrystalline materials without the tedious remeshing. 
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